Title: Computer Hardware Engineering

Code Number: MD1102

Credit Hours: 3 (3+0)

Prerequisites: None

Semester: 1st

Course Objectives

The course will enable students to:

- 1. Identify and describe the core components of a computer system, including CPU, RAM and ROM.
- 2. Describe the construction and functioning of Storage Devices and Motherboard

Course Content:

Unit 1: Introduction to Computers and System Software vs Application Software

- 1. Overview of Computing and its Evolution
- 2. System Software vs Application Software
- 3. Understanding Operating Systems
- 4. Introduction to Components of Computing Devices

Unit 2: Data Representation and Logic Gates

- 1. Concepts of Bits and Bytes
- 2. Binary and Hexadecimal Numbers
- 3. Logic Gates and Boolean Logic
- 4. Logical Operations in Computing

Unit 3: Digital Foundations: Analog vs Digital, Continuous vs Discrete

- 1. Analog vs Digital Signals
- 2. Continuous vs Discrete Data Representation
- 3. AC vs DC Power Sources
- 4. Sampling Rate and Frequency in Digital Processing

Unit 4: Core Components of Computing Devices

- 1. Central Processing Unit (CPU)
- 2. Input/Output Devices (I/O)
- 3. Memory (RAM)
- 4. Storage Devices and Read-Only Memory (ROM)

Unit 5: Memory Types and Speed

- 1. Memory vs Speed Trade-offs
- 2. SRAM vs DRAM Technologies
- 3. Construction of Cells in SRAM and DRAM
- 4. Levels of SRAM: L1, L2, L3 Cache

Unit 6: Dynamic Random-Access Memory (DRAM)

- 1. Types of DRAM: SDRAM, DDR, DDR2, DDR3, DDR4
- 2. Internal Clock Speed, I/O Clock Speed, Bus Size
- 3. Pre-fetch per Cycle, Synchronous vs Asynchronous Communication

4. Parts and Generations of DRAM

Unit 7: BIOS and Motherboard Introduction

- 1. BIOS (Basic Input/Output System)
- 2. Legacy BIOS vs UEFI
- 3. CMOS (Complementary Metal-Oxide-Semiconductor)
- 4. Construction and Functioning of BIOS
- 5. Introduction to Motherboard, Chipset, Ports, Slots

Unit 8: Central Processing Unit (CPU)

- 1. Construction and Architecture of CPU
- 2. Parts and Components of CPU
- 3. Working Principles of CPU
- 4. Generations of Intel CPUs
- 5. Concepts of Cores and Hyperthreading

Unit 9: Storage Devices

- 1. Hard Disk Drives (HDD)
- 2. Construction, Read/Write Process
- 3. Cylinders, Sectors, Tracks
- 4. Seek Time, Rotational Latency, Access Time, Transmission Time

Unit 10: Solid State Drives (SSD) and Compact Disks (CDs)

- 1. Construction of SSD
- 2. Charge Trap Cell, String, Row, Page, Bit-line, Control Gate
- 3. Construction of CDs
- 4. Read/Write Process, Sectors, Tracks

Teaching-Learning Strategies:

The pedagogical approach to this course relies on face-to-face teaching in a university classroom environment. The lectures are delivered using multimedia support and on white board. Students are engaged and encouraged to solve real world problems using computer-aided tools.

Assignments/Types and Number with calendar:

A minimum of four assignments to be submitted before the written exams for each term.

Assessment and Examinations:

Sr. No.	Elements	Weightage	Details
1.	Midterm Assessment	35%	It takes place at the mid-point of the semester.
2.	Sessional Assessment	25%	It is continuous assessment. It includes: classroom participation, attendance, assignments and presentations, homework, attitude and behavior, hands- on-activities, short tests, quizzes etc.

3.	Final Assessment	40%	It takes place at the end of the semester. It is mostly in the form of a test, but owing to the nature of the course the teacher may assess their students based on term paper, research proposal development, field work and report writing etc.
----	---------------------	-----	--

Recommended Books:

- 1. Wilson, K. "Exploring computer hardware: The illustrated guide to understanding computer hardware, components, peripherals & networks" (Exploring Tech), 2022 edition. (2022).
- 2. Brian Williams and Stacey Sawyer, "Using Information Technology", McGraw-Hill, 11thedition (2014).
- 3. Patt and Patel, "Introduction to Computing Systems from Bits and Gates to C and Beyond", McGraw-Hill, 2nd edition (2004).